SRA gene knockout protects against diet-induced obesity and improves glucose tolerance.

نویسندگان

  • Shannon Liu
  • Liang Sheng
  • Hongzhi Miao
  • Thomas L Saunders
  • Ormond A MacDougald
  • Ronald J Koenig
  • Bin Xu
چکیده

We have recently shown that the non-coding RNA, steroid receptor RNA activator (SRA), functions as a transcriptional coactivator of PPARγ and promotes adipocyte differentiation in vitro. To assess SRA function in vivo, we have generated a whole mouse Sra1 gene knock-out (SRA(-/-)). Here, we show that the Sra1 gene is an important regulator of adipose tissue mass and function. SRA is expressed at a higher level in adipose tissue than other organs in wild type mice. SRA(-/-) mice are resistant to high fat diet-induced obesity, with decreased fat mass and increased lean content. This lean phenotype of SRA(-/-) mice is associated with decreased expression of a subset of adipocyte marker genes and reduced plasma TNFα levels. The SRA(-/-) mice are more insulin sensitive, as evidenced by reduced fasting insulin, and lower blood glucoses in response to IP glucose and insulin. In addition, the livers of SRA(-/-) mice have fewer lipid droplets after high fat diet feeding, and the expression of lipogenesis-associated genes is decreased. To our knowledge, these data are the first to indicate a functional role for SRA in adipose tissue biology and glucose homeostasis in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cytochrome P-450 CYP2E1 knockout mice are protected against high-fat diet-induced obesity and insulin resistance.

Conventional (whole body) CYP2E1 knockout mice displayed protection against high-fat diet-induced weight gain, obesity, and hyperlipidemia with increased energy expenditure despite normal food intake and spontaneous locomotor activity. In addition, the CYP2E1 knockout mice displayed a marked improvement in glucose tolerance on both normal chow and high-fat diets. Euglycemic-hyperinsulinemic cla...

متن کامل

Y2Y4 receptor double knockout protects against obesity due to a high-fat diet or Y1 receptor deficiency in mice.

Neuropeptide Y receptors are critical regulators of energy homeostasis, but the functional interactions and relative contributions of Y receptors and the environment in this process are unknown. We measured the effects of an ad libitum diet of normal or high-fat food on energy balance in mice with single, double, or triple deficiencies of Y1, Y2, or Y4 receptors. Whereas wild-type mice develope...

متن کامل

Kinin B1 and B2 receptor deficiency protects against obesity induced by a high-fat diet and improves glucose tolerance in mice

The kallikrein-kinin system is well known for its role in pain and inflammation, and has been shown recently by our group to have a role also in the regulation of energy expenditure. We have demonstrated that B1 receptor knockout (B1KO) mice are resistant to obesity induced by a high-fat diet (HFD) and that B1 receptor expression in adipocytes regulates glucose tolerance and predisposition to o...

متن کامل

LncRNA SRA promotes hepatic steatosis through repressing the expression of adipose triglyceride lipase (ATGL)

Nonalcoholic fatty liver disease (NAFLD), the most common form of chronic liver disease, manifests as an over-accumulation of hepatic fat. We have recently shown that mice with genetic knockout of a long non-coding RNA (lncRNA) steroid receptor RNA activator (SRA) (SRAKO) are resistant to high fat diet-induced obesity with a phenotype that includes improved glucose tolerance and attenuated hepa...

متن کامل

Adenylyl Cyclase Type 5 Deficiency Protects Against Diet-Induced Obesity and Insulin Resistance

Adenylyl cyclase type 5 knockout (AC5KO) mice have increased longevity and share a similar phenotype with calorie-restricted wild-type (WT) mice. To determine the in vivo metabolic properties of AC5 deficiency, we compared the effects of standard diet (SD) and high-fat diet (HFD) on obesity, energy balance, glucose regulation, and insulin sensitivity. AC5KO mice on SD had reduced body weight an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 289 19  شماره 

صفحات  -

تاریخ انتشار 2014